Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 53759
1.  
i

Среди вы­ра­же­ний  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ; (−1)6; 60; 12 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ; (0,6)−1 ука­жи­те то, зна­че­ние ко­то­ро­го равно 6.

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) (−1)6
3) 60
4) 12 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
5) (0,6)−1
2.  
i

Опре­де­ли­те оста­ток, ко­то­рый по­лу­чит­ся при де­ле­нии на 9 числа 83 245.

1) 8
2) 7
3) 6
4) 5
5) 4
3.  
i

Если плос­кость ка­са­ет­ся сферы, диа­метр ко­то­рой равен 12, то рас­сто­я­ние от цен­тра сферы до точки ка­са­ния равно:

1) 10
2) 12
3) 6
4) 18
5) 24
4.  
i

Среди чисел −7; −8; −5; −6; −9 ука­жи­те то, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства  дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 6 конец дроби боль­ше или равно 0.

1) −7
2) −8
3) −5
4) −6
5) −9
5.  
i

Ука­жи­те ре­зуль­тат раз­ло­же­ния мно­го­чле­на cx плюс cy минус левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка в квад­ра­те

а)    левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2c минус x плюс y пра­вая круг­лая скоб­ка

б)    левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка c минус x плюс y пра­вая круг­лая скоб­ка

в)    левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка c минус x минус y пра­вая круг­лая скоб­ка

г)    левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка c минус 2 пра­вая круг­лая скоб­ка

д)    левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка c минус 1 пра­вая круг­лая скоб­ка

1) а
2) 6
3) в
4) г
5) д
6.  
i

За n ко­ро­бок кон­фет было за­пла­че­но 152 руб. 20 коп., а за n ко­ро­бок пе­че­нья  — b руб. Со­ставь­те вы­ра­же­ние, ко­то­рое опре­де­ля­ет, на сколь­ко ко­пе­ек ко­роб­ка пе­че­нья де­шев­ле ко­роб­ки кон­фет.

1)  дробь: чис­ли­тель: 152,2 минус b, зна­ме­на­тель: n конец дроби
2)  дробь: чис­ли­тель: 15220 минус 100b, зна­ме­на­тель: n конец дроби
3)  дробь: чис­ли­тель: 152,2 минус b, зна­ме­на­тель: 100n конец дроби
4)  дробь: чис­ли­тель: 15220 плюс 100b, зна­ме­на­тель: n конец дроби
5)  дробь: чис­ли­тель: левая круг­лая скоб­ка 152,2 минус b пра­вая круг­лая скоб­ка n, зна­ме­на­тель: 100 конец дроби
7.  
i

Пло­ща­ди двух участ­ков поля на­хо­дят­ся в от­но­ше­нии 4 : 7. Ка­ко­ва пло­щадь (в гек­та­рах) ме­ны­ше­го участ­ка поля, если общая пло­щадь двух участ­ков равна 495 га?

1) 165 га
2) 124 га
3) 180 га
4) 71 га
5) 213 га
8.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка плюс \ctg дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби .

1)  дробь: чис­ли­тель: 16 плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
2)  дробь: чис­ли­тель: 12 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
3) 4 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4)  дробь: чис­ли­тель: 24 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 3 конец дроби
5) 16 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
9.  
i

Дан тре­уголь­ник ABC, в ко­то­ром AC  =  32. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те длину сто­ро­ны AB тре­уголь­ни­ка ABC.

1) 10,2
2) 14,6
3) 13,8
4) 13,5
5) 10,4
10.  
i

Ука­жи­те но­ме­ра вер­ных не­ра­венств, если из­вест­но, что 0 мень­ше a мень­ше 1.

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: a в сте­пе­ни 6 конец дроби боль­ше 1
2) a в сте­пе­ни 4 мень­ше a в сте­пе­ни 5
3) a в кубе боль­ше 1
4) a боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби
5) 2 мень­ше a плюс 2 мень­ше 3
11.  
i

Вы­бе­ри­те все вер­ные утвер­жде­ния, яв­ля­ю­щи­е­ся свой­ства­ми не­чет­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; бес­ко­неч­ность пра­вая круг­лая скоб­ка и за­дан­ной фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те плюс 10x при x\leqslant0.

1.  Функ­ция имеет три нуля.

2.  Функ­ция убы­ва­ет на про­ме­жут­ке [6; 9].

3.  Мак­си­мум функ­ции равен 25.

4.  Ми­ни­маль­ное зна­че­ние функ­ции равно -25.

5.  f левая круг­лая скоб­ка f левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка =0.

6.  Функ­ция при­ни­ма­ет от­ри­ца­тель­ные зна­че­ния при x при­над­ле­жит левая квад­рат­ная скоб­ка 10; 14 пра­вая квад­рат­ная скоб­ка .

7.  Гра­фик функ­ции сим­мет­ри­чен от­но­си­тель­но оси абс­цисс.

 

Ответ за­пи­ши­те в виде по­сле­до­ва­тель­но­сти цифр в по­ряд­ке воз­рас­та­ния. На­при­мер: 123.

12.  
i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки дви­же­ния пяти мо­то­цик­ли­стов. Для на­ча­ла каж­до­го из пред­ло­же­ний А−В под­бе­ри­те его окон­ча­ние 1−5 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

A)  Гра­фик дви­же­ния мо­то­цик­ли­ста, ко­то­рый дви­гал­ся с наи­мень­шей ско­ро­стью, обо­зна­чен бук­вой ...

Б)  Гра­фик дви­же­ния мо­то­цик­ли­ста, ко­то­рый дви­гал­ся с наи­боль­шей ско­ро­стью, обо­зна­чен бук­вой ...

В)  Гра­фик дви­же­ния мо­то­цик­ли­ста, ко­то­рый дви­гал­ся со ско­ро­стью 18 км/ч, обо­зна­чен бук­вой ...

Окон­ча­ние пред­ло­же­ния

1)  A

2)  B

3)  C

4)  D

5)  F

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

13.  
i

Дан пря­мо­уголь­ный па­рал­ле­ле­пи­пед ABCDA1B1C1D1. Точки K и M лежат на реб­рах A1B1 и DD1 со­от­вет­ствен­но, точка N лежит на пря­мой CC1 (см. рис.). Вы­бе­ри­те вер­ные утвер­жде­ния:

 

1)  пря­мая KN лежит в плос­ко­сти B1C1C;

2)  пря­мая MN пе­ре­се­ка­ет пря­мую C1D1;

3)  пря­мая MN па­рал­лель­на плос­ко­сти AA1B1;

4)  пря­мая KM па­рал­лель­на плос­ко­сти CBB1;

5)  пря­мая KM лежит в плос­ко­сти KB1M;

6)  пря­мая KM пе­ре­се­ка­ет пря­мую B1C1.

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 134.

14.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .

15.  
i

Гра­дус­ная мера угла ABC равна 112°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 7 (cм. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.

16.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 18, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

17.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: левая круг­лая скоб­ка 1 плюс a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка конец дроби при a  =  36.

18.  
i

Через элек­трон­ный сер­вис Маша ку­пи­ла билет на кон­церт и за­пла­ти­ла 80 руб. В эту сумму вхо­дит сто­и­мость би­ле­та и сер­вис­ный сбор 4 руб. За не­де­лю до кон­цер­та Маша-ре­ши­ла вер­нуть билет. По пра­ви­лам ор­га­ни­за­то­ра кон­цер­та ей вер­нут не менее 75% сто­и­мо­сти би­ле­та. Какую наи­боль­шую сумму (в руб­лях) может по­те­рять Маша, вер­нув билет?

19.  
i

Зна­че­ние вы­ра­же­ния  9 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 6 минус x_0 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка , где x0  — ко­рень урав­не­ния  4 в сте­пе­ни x умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =36 ко­рень из: на­ча­ло ар­гу­мен­та: 144 в сте­пе­ни левая круг­лая скоб­ка 2 x плюс 9 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , равно ... .

20.  
i

Длины сто­рон па­рал­ле­ло­грам­ма от­но­сят­ся как 4 : 5, а вы­со­та, про­ве­ден­ная к боль­шей сто­ро­не, равна 6. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь па­рал­ле­ло­грам­ма, если один из углов па­рал­ле­ло­грам­ма равен 120°.

21.  
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: x в кубе , зна­ме­на­тель: 3 конец дроби минус 15 x в квад­ра­те .

22.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка дробь: чис­ли­тель: 128, зна­ме­на­тель: b конец дроби пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 4 a пра­вая круг­лая скоб­ка , если  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка a b пра­вая круг­лая скоб­ка =27.

23.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство всех на­ту­раль­ных ре­ше­ний си­сте­мы не­ра­венств

 си­сте­ма вы­ра­же­ний 124 минус x в квад­ра­те боль­ше 0,x в квад­ра­те минус 4x боль­ше 0. конец си­сте­мы .

24.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x минус 2y = 10,xy = 12. конец си­сте­мы . Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.

25.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8x в квад­ра­те минус 18x плюс 5 конец ар­гу­мен­та = x минус 1. В ответ за­пи­ши­те по­лу­чен­ный ре­зуль­тат, уве­ли­чен­ный в 14 раз.

26.  
i

ABCA1B1C1  — пра­виль­ная тре­уголь­ная приз­ма, все ребра ко­то­рой равны 6. Точки P и K  — се­ре­ди­ны ребер B1C1 и CC1 со­от­вет­ствен­но, M ∈ AA1, A1M : A1A  =  1 : 3 (см. рис.). Най­ди­те уве­ли­чен­ный в 25 раз квад­рат длины от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M, K, P, пе­ре­се­ка­ет грань AA1B1B.

27.  
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби =1 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 365 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка ; минус 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка пра­вая квад­рат­ная скоб­ка .

28.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 15 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 15 конец ар­гу­мен­та =12.

29.  
i

При де­ле­нии не­ко­то­ро­го на­ту­раль­но­го дву­знач­но­го числа на сумму его цифр не­пол­ное част­ное равно 7, а оста­ток равен 6. Если цифры дан­но­го числа по­ме­нять ме­ста­ми и по­лу­чен­ное число раз­де­лить на сумму его цифр, то не­пол­ное част­ное будет равно 3, а оста­ток будет равен 5. Най­ди­те ис­ход­ное число.

30.  
i

ABCDA1B1C1D1  — куб. Точка K лежит на ребре AD куба так, что AK : KD  =  1 : 4. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 16, зна­ме­на­тель: ко­си­нус в квад­ра­те фи конец дроби , где φ  — угол между пря­мы­ми D1K и A1C1.